(Continued from page 145)

BOOKS

Heat-Transfer Calculations by Finite Differences, George M. Dusinberre, International Textbook Company, Scranton, Pennsylvania (1961). 293 pages.

Professor Dusinberre has helped to bring to finite-difference methods the same degree of development enjoyed by the analytical and analogue methods. Carslaw and Jaeger's definitive volume is available for analytical solutions, and several good books on analogues have appeared, but no previous work of such completeness exists for arithmetic methods for heat transfer calculations. As a man experienced in all three techniques, the author has made the lessons of his experience available to the practicing engineer.

It is particularly true of finite-difference methods that facility can only come from experience in using them. This book is a guide for gaining that experience most rapidly. The bulk of the book is devoted to real problem applications. The arrangement of these problems is uniform throughout. Each section is labeled, in order, PROB-DISCUSSION, LEM, DISCUSSION, NUMERICAL DATA, and SOLUTION. An average of four or five pages is devoted to each sample problem, which gives an indication of the detail. In most cases two or more alternate solutions are discussed. The examples cover all of the more commonly encountered heat flow situations, transient and steady state in simple and complex geometries, while providing the background for handling others. Two chapters deserve special mention. The first is an infrequently included treatment of transients in flow systems, and the second is a thorough chapter on variable properties.

This reviewer feels that insufficient emphasis is given to the ubiquitous difficulties associated with instability. A five-page chapter deals with methods for minimizing or avoiding the size limitations imposed on time and space intervals by the stability criterion. The topic is worthy of more attention. Oftentimes the success of a solution proceeds from a fortuitous first choice for the form of the equations to be used.

In summary, this useful book should find a place in a field of still growing importance. As the author points out, numerical solutions do not, as is often charged, suffer from a lack of generality. A graph of dimensionless ratios is as general as a differential equation. It is also a fact that even in cases where analytical solutions are possible, finite-difference methods may lead to simpler computation. Any practicing engineer working on complicated heat transfer problems could profit by access to all of the material in this book.

JOHN R. BARTLIT
YALE UNIVERSITY

Pore Diffusion in Silver Catalysts Shinobu Masamune and J. M. Smith	217
Thermal Conductivity of Gas Mixtures Henry Cheung, Leroy A. Bromley, and C. R. Wilke	221
The Viscosity of Polar Gases at Normal Pressures Leonard I. Stiel and George Thodos	229
Coalescence Frequencies in Agitated Liquid-Liquid Systems A. J. Madden and Glenn L. Damerell	233
Axial Solid Distribution in Gas-Solid Fluidized Beds Liang-Tseng Fan, Chau Jen Lee, and Richard C. Bailie	239
Measurement of Instantaneous Rates of Mass Transfer to a Small Sink on a Wall L. Philip Reiss and Thomas J. Hanratty	245
The Kinetics of Ion Exclusion Basil Vassiliou and Joshua S. Dranoff	248
Fundamental Aspects of Rotating Disk Contractor Performance C. P. Strand, R. B. Olney, and G. H. Ackerman	252
Power Requirements of Gas-Liquid Agitated Systems B. J. Michel and S. A. Miller	262
Transport Characteristics of Suspensions: Part IV. Friction Loss of Concentrated Flocculated Suspensions in Turbulent Flow	266
Books	146
Communications to the Editor	
Letter to the Editor	272
Characteristics of Thermistors When Used as Power Sources of Known Temperature	273
Effect of a Surface Active Agent on the Velocity of Rise of Benzene Drops in	
Water Joseph H. Gibbons, Gerald Houghton, and James Coull	274
	274 277
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents	
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents Ramalingam Sitaraman, S. H. Ibrahim, and N. R. Kuloor	277
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents Ramalingam Sitaraman, S. H. Ibrahim, and N. R. Kuloor Isothermal Diffusion with a Variable Density Owen T. Hanna The Energy Equation for Two-Phase Flow John Vohr Use of Momentum and Energy Equations in Two-Phase Flow	277 278
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents Ramalingam Sitaraman, S. H. Ibrahim, and N. R. Kuloor Isothermal Diffusion with a Variable Density Owen T. Hanna The Energy Equation for Two-Phase Flow John Vohr	277 278 280
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents Ramalingam Sitaraman, S. H. Ibrahim, and N. R. Kuloor Isothermal Diffusion with a Variable Density Owen T. Hanna The Energy Equation for Two-Phase Flow John Vohr Use of Momentum and Energy Equations in Two-Phase Flow D. E. Lamb and J. L. White Reply H. S. Isbin	277 278 280 281
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents Ramalingam Sitaraman, S. H. Ibrahim, and N. R. Kuloor Isothermal Diffusion with a Variable Density Owen T. Hanna The Energy Equation for Two-Phase Flow John Vohr Use of Momentum and Energy Equations in Two-Phase Flow D. E. Lamb and J. L. White Reply H. S. Isbin A Note on Unsteady Forced Convection Heat Transfer William N. Gill Abstracts	277 278 280 281 284 284
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents Ramalingam Sitaraman, S. H. Ibrahim, and N. R. Kuloor Isothermal Diffusion with a Variable Density Owen T. Hanna The Energy Equation for Two-Phase Flow John Vohr Use of Momentum and Energy Equations in Two-Phase Flow D. E. Lamb and J. L. White Reply H. S. Isbin A Note on Unsteady Forced Convection Heat Transfer William N. Gill Abstracts Symposium Series	277 278 280 281 284 284
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents Ramalingam Sitaraman, S. H. Ibrahim, and N. R. Kuloor Isothermal Diffusion with a Variable Density Owen T. Hanna The Energy Equation for Two-Phase Flow John Vohr Use of Momentum and Energy Equations in Two-Phase Flow D. E. Lamb and J. L. White Reply H. S. Isbin A Note on Unsteady Forced Convection Heat Transfer William N. Gill Abstracts Symposium Series Computer Program Interchange	277 278 280 281 284 284 285 288
Water Joseph H. Gibbons, Gerald Houghton, and James Coull Diffusivity of Water in Organic Solvents Ramalingam Sitaraman, S. H. Ibrahim, and N. R. Kuloor Isothermal Diffusion with a Variable Density Owen T. Hanna The Energy Equation for Two-Phase Flow John Vohr Use of Momentum and Energy Equations in Two-Phase Flow D. E. Lamb and J. L. White Reply H. S. Isbin A Note on Unsteady Forced Convection Heat Transfer William N. Gill Abstracts Symposium Series	277 278 280 281 284 284